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Abstract. We analyse some peculiar properties of the function of the Mittag-

Leffler (M-L) type, eα(t) := Eα(−tα) for 0 < α < 1 and t > 0, which is known

to be completely monotone (CM) with a non-negative spectrum of frequencies

and times, suitable to model fractional relaxation processes. We first note

that (surprisingly) these two spectra coincide so providing a universal scaling

property of this function, not well pointed out in the literature. Furthermore,

we consider the problem of approximating our M-L function with simpler CM

functions for small and large times. We provide two different sets of elementary

CM functions that are asymptotically equivalent to eα(t) as t → 0 and t →
+∞. The first set is given by the stretched exponential for small times and the

power law for large times, following a standard approach. For the second set

we chose two rational CM functions in tα, obtained as the Padè Approximants
(PA) [0/1] to the convergent series in positive powers (as t → 0) and to the

asymptotic series in negative powers (as t → ∞), respectively. From numerical

computations we are allowed to the conjecture that the second set provides

upper and lower bounds to the Mittag-Leffler function.

1. Introduction. Since a few decades the special transcendental function known as
Mittag-Leffler function has attracted an increasing attention of researchers because
of its key role in treating problems related to integral and differential equations of
fractional order.

Since its introduction by the Swedish mathematician Mittag-Leffler at the be-
ginning of the last century up to the 1990’s, this function was seldom considered by
mathematicians and applied scientists.

Before the 1990’s, from a mathematical point of view ,we recall the 1930 paper
by Hille and Tamarkin [18] on the solutions of the Abel integral equation of the
second kind, and the books by Davis [8], Sansone & Gerretsen [40], Dzherbashyan
[10] (unfortunately in Russian), and finally Samko et al. [38]. Particular mention
would be for the 1955 Handbook of High Transcendental Functions of the Bateman
project [11], where this function was treated in the chapter devoted to miscella-
neous functions. For former applications we recall an interesting note by Davis [8]
reporting a previous research by Dr. Kenneth S. Cole in connection with nerve
conduction, and the papers by Cole & Cole [7], Gross [16] and Caputo & Mainardi
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[5, 6], where the Mittag-Leffler function was adopted to represent the responses in
dielectric and viscoelastic media.

In the 1960’s the Mittag-Leffler function started to exit from the realm of mis-
cellaneous functions because it was considered as a special case of the general class
of Fox H functions, that can exhibit an arbitrary number of parameters in their
integral Mellin-Barnes representation, see e.g.the books by Kiryakova [23], Kilbas
and Saigo [21], Marichev [30], Mathai & Saxena [32], Mathai et al. [33], Srivastava
et.al. [43].

However, in our opinion, this classification in a too general framework has, to
some extent, obscured the relevance and the applicability of this function in applied
science. In fact most mathematical models are based on a small number of parame-
ters, say 1 or 2 or 3, so that a general theory may be confusing whereas the adoption
of a generalized Mittag-Leffler function with 2 or 3 indices may be sufficient, see e.g.
Beghin & Orsingher [3], Capelas et al. [4], Sandev et al. [39], Tomovski et al. [46].
Multi-index Mittag-Leffler functions have been introduced as well, see e.g. Kilbas
et al. [19], Kilbas & Saigo [20], Kiryakova [24], Kiryakova & Luchko [25], but their
extensive use has not yet been pointed out in applied sciences up to now.

Nowadays it is well recognized that the Mittag-Leffler function plays a funda-
mental role in Fractional Calculus even if with a single parameter (as originally
introduced by Mittag-Leffler) just to be worth of being referred to as the Queen
Function of Fractional Calculus, see Mainardi & Gorenflo [29]. On this respect we
just point out some reviews and treatises on Fractional Calculus (in order of pub-
lication time): Gorenflo & Mainardi [15], Podlubny [35], Hilfer [17], Kilbas et al.
[22], Magin [27], Mathai & Haubold [31], Mainardi [28], Diethelm [9], Tarasov [45],
Klafter et al. [26], Baleanu et al. [2], Uchaikin [47].

2. The Mittag-Leffler function in fractional relaxation processes. The
Mittag-Leffler function is defined by the following power series, convergent in the
whole complex plane,

Eα(z) :=

∞∑
n=0

zn

Γ(αn+ 1)
, α > 0 , z ∈ C . (2.1)

We recognize that it is an entire function providing a simple generalization of the
exponential function to which it reduces for α = 1. We also note that for the con-
vergence of the power series in (2.1) the parameter α may be complex provided
that �(α) > 0. The most interesting properties of the Mittag-Leffler function are
associated with its asymptotic expansions as z → ∞ in various sectors of the com-
plex plane. For detailed asymptotic analysis, which includes the smooth transition
across the Stokes lines, the interested reader is referred to Wong and Zhao [48].

In this paper we limit ourselves to the Mittag-Leffler function of order α ∈ (0, 1)
on the negative real semi-axis where is known to be completely monotone (CM) due
a classical result by Pollard [37], see also Feller [12].

Let us recall that a function φ(t) with t ∈ IR+ is called a completely monotone
(CM) function if it is non-negative, of class C∞, and (−1)nφ(n)(t) ≥ 0 for all n ∈ IN.
Then a function ψ(t) with t ∈ IR+ is called a Bernstein function if it is non-negative,
of class C∞, with a CM first derivative. These functions play fundamental roles
in linear hereditary mechanics to represent relaxation and creep processes, see e.g
Mainardi [28]. For mathematical details we refer the interested reader to the survey
paper by Miller and Samko [34] and to the recent book by Schilling et al. [41].
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In particular we are interested to the function

eα(t) := Eα(−tα) =
∞∑

n=0

(−1)n
tαn

Γ(αn+ 1)
, t > 0 , 0 < α ≤ 1 , (2.2)

that provides the solution to the fractional relaxation equation, see Gorenflo and
Mainardi [15], Mainardi and Gorenflo [29], Mainardi [28].

For readers’ convenience let us briefly outline the topic concerning the general-
ization via fractional calculus of the first-order differential equation governing the
phenomenon of (exponential) relaxation. Recalling (in non-dimensional units) the
initial value problem

du

dt
= −u(t) , t ≥ 0 , with u(0+) = 1 (2.3)

whose solution is
u(t) = exp(−t) , (2.4)

the following two alternatives with α ∈ (0, 1) are offered in the literature:

du

dt
= −D1−α

t u(t) , t ≥ 0 , with u(0+) = 1 , (2.5a)

∗Dα
t u(t) = −u(t) , t ≥ 0 , with u(0+) = 1 . (2.5b)

where D1−α
t and ∗Dα

t denote the fractional derivative of order 1−α in the Riemann-
Liouville sense and the fractional derivative of order α in the Caputo sense, respec-
tively.

For a generic order μ ∈ (0, 1) and for a sufficiently well-behaved function f(t)
with t ∈ IR+ the above derivatives are defined as follows, see e.g. Gorenflo and
Mainardi [15], Podlubny [35],

Dμ
t f(t) =

1

Γ(1− μ)

d

dt

[∫ t

0

f(τ)

(t− τ)μ
dτ

]
, (2.6a)

∗D
μ
t f(t) =

1

Γ(1− μ)

∫ t

0

f ′(τ)
(t− τ)μ

dτ . (2.6b)

Between the two derivatives we have the relationship

∗D
μ
t f(t) = Dμ

t f(t)− f(0+)
t−μ

Γ(1− μ)
= Dμ

t

[
f(t)− f(0+)

]
. (2.7)

Both derivatives in the limit μ → 1− reduce to the standard first derivative but for
μ → 0+ we have

Dμ
t f(t) → f(t) , ∗D

μ
t f(t) = f(t)− f(0+) , μ → 0+ . (2.8)

In analogy to the standard problem (2.3), we solve the problems (2.5a) and (2.5b)
with the Laplace transform technique, using the rules pertinent to the corresponding
fractional derivatives. The problems (a) and (b) are equivalent since the Laplace
transform of the solution in both cases comes out as

ũ(s) =
sα−1

sα + 1
, (2.9)

that yields our function
u(t) = eα(t) := Eα(−tα) . (2.10)

The Laplace transform pair

eα(t) ÷ sα−1

sα + 1
, α > 0 , (2.11)
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can be proved by transforming term by term the power series representation of
eα(t) in the R.H.S of (2.2). Furthermore, by anti-transforming the R.H.S of (2.11)
by using the complex Bromwich formula, and taking into account for 0 < α < 1 the
contribution from branch cut on the negative real semi-axis (the denominator sα+1
does nowhere vanish in the cut plane −π ≤ arg s ≤ π), we get, see also Gorenflo
and Mainardi [15],

eα(t) =

∫ ∞

0

e−rtKα(r) dr , (2.12)

where

Kα(r) = ∓ 1

π
Im

{
sα−1

sα + 1

∣∣∣∣
s = r e±iπ

}
=

1

π

rα−1 sin (απ)

r2α + 2 rα cos (απ) + 1
≥ 0 . (2.13)

Since Kα(r) is non-negative for all r in the integral, the above formula proves that
eα(t) is CM function in view of the Bernstein theorem. This theorem provides a
necessary and sufficient condition for a CM function as a real Laplace transform of
a non-negative measure.

However, the CM property of eα(t) can also be seen as a consequence of the result
by Pollard because the transformation x = tα is a Bernstein function for α ∈ (0, 1).
In fact it is known that a CM function can be obtained by composing a CM with a
Bernstein function based on the following theorem: Let φ(t) be a CM function and
let ψ(t) be a Bernstein function, then φ[ψ(t)] is a CM function.

As a matter of fact, Kα(r) provides an interesting spectral representation of
eα(t) in frequencies. With the change of variable τ = 1/r we get the corresponding
spectral representation in relaxation times, namely

eα(t) =

∫ ∞

0

e−t/τHα(τ) dτ , Hα(τ) = τ−2 Kα(1/τ) , (2.14)

that can be interpreted as a continuous distributions of elementary (i.e. exponential)
relaxation processes. As a consequence we get the identity between the two spectral
distributions, that is

Hα(τ) =
1

π

τα−1 sin (απ)

τ2α + 2 τα cos (απ) + 1
, (2.15)

a surprising fact pointed out in Linear Viscoelasticity by the author in his book [28].
This kind of universal/scaling property seems a peculiar one for our Mittag-Leffler
function eα(t). In Fig 1 we show Kα(r) for some values of the parameter α. Of
course for α = 1 the Mittag-Leffler function reduces to the exponential function
exp(−t) and the corresponding spectral distribution is the Dirac delta generalized
function centred at r = 1, namely δ(r − 1).

3. Asymptotic approximations to the Mittag-Lefler function. In Fig 2 we
show some plots of eα(t) for some values of the parameter α. It is worth to note
the different rates of decay of eα(t) for small and large times. In fact the decay is
very fast as t → 0+ and very slow as t → +∞.

3.1. The two common asymptotic approximations. It is common to point
out that the function eα(t) matches for t → 0+ with a stretched exponential with
an infinite negative derivative, whereas as t → ∞ with a negative power law. The
short time approximation is derived from the convergent power series representation
(2.2). In fact,
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Fig.1 Plots of the spectral function Kα(r) for α = 0.25, 0.50, 0.75, 0.90 in the fre-
quency range 0 ≤ r ≤ 2.
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Fig.2 Plots of the Mittag-Leffler function eα(t) for α = 0.25, 0.50, 0.75, 0.90, 1. in
the time range 0 ≤ t ≤ 15

eα(t) = 1− tα

Γ(1 + α)
+ · · · ∼ exp

[
− tα

Γ(1 + α)

]
, t → 0 . (3.1)

The long time approximation is derived from the asymptotic power series represen-
tation of eα(t) that turns out to be, see Erdélyi (1955),

eα(t) ∼
∞∑

n=1

(−1)n−1 t−αn

Γ(1− αn)
, t → ∞ , (3.2)

so that, at the first order,

eα(t) ∼ t−α

Γ(1− α)
, t → ∞ . (3.3)

As a consequence the function eα(t) interpolates for intermediate time t between
the stretched exponential and the negative power law. The stretched exponential
models the very fast decay for small time t, whereas the asymptotic power law is
due to the very slow decay for large time t. In fact, we have the two commonly
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stated asymptotic representations:

eα(t) ∼

⎧⎪⎪⎨
⎪⎪⎩

e0α(t) := exp

[
− tα

Γ(1 + α)

]
, t → 0 ;

e∞α (t) :=
t−α

Γ(1− α)
=

sin(απ)

π

Γ(α)

tα
, t → ∞ .

(3.4)

The stretched exponential replaces the rapidly decreasing expression 1−tα/Γ(1 + α)
from (3.1). Of course, for sufficiently small and for sufficiently large values of t we
have the inequality

e0α(t) ≤ e∞α (t) , 0 < α < 1 . (3.5)

In Figs 3-7 LEFT we compare for α = 0.25, 0.5, 0.75, 0.90, 0.99 in logarithmic
scales the function eα(t) (continuous line) and its asymptotic representations, the
stretched exponential e0α(t) valid for t → 0 (dashed line) and the power law e∞α (t)
valid for t → ∞ (dotted line). We have chosen the time range 10−5 ≤ t ≤ 10+5. In
the RIGHT we have shown the plots of the relative errors (in absolute values)

|e0α(t)− eα(t)|
eα(t)

,
|e∞α (t)− eα(t)|

eα(t)
, (3.6)

pointing out a continuous line at an error 1% under which the approximations can
be considered reliable.

Fig.3 Approximations e0α(t) (dashed line) and e∞α (t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.25.

Fig.4 Approximations e0α(t) (dashed line) and e∞α (t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.50.
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Fig.5 Approximations e0α(t) (dashed line) and e∞α (t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.75.

Fig.6 Approximations e0α(t) (dashed line) and e∞α (t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.90.

Fig.7 Approximations e0α(t) (dashed line) and e∞α (t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.99.

We note from Figs 3-7 that, whereas the plots of e0α(t) remain always under the
corresponding ones of eα(t), the plots of e∞α (t) start above those of eα(t) but, at a
certain point, an intersection may occur so changing the sign of the relative errors.
The steep cusps occurring to the left of t = 100 in Figs 5, 6, and 7 indicates that
there the relative error is falling down to zero.

3.2. The two rational asymptotic approximations. We now propose a new set
of CM functions approximating eα(t): {fα(t), gα(t)}, alternative to {e0α(t), e∞α (t)},
obtained as the first Padè approximants [0/1] to the power series in tα (2.2) and
(3.2), respectively. For more details on the theory of Padè Approximants we refer
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e.g. to Baker [1]. We thus obtain the following rational functions in tα:

fα(t) :=
1

1 + tα

Γ(1+α)

∼ 1− tα

Γ(1 + α)
∼ eα(t) , t → 0 , (3.7)

gα(t) :=
1

1 + tαΓ(1− α)
∼ t−α

Γ(1− α)
∼ eα(t) , t → ∞ . (3.8)

Now we prove the inequality

gα(t) ≤ fα(t) , t ≥ 0 , 0 < α < 1 , (3.9)

as a straightforward consequence of the reflection formula of the gamma function.
In fact, recalling the definitions (3.7)-(3.8) we have for ∀t ≥ 0 and α ∈ (0, 1):

gα(t) ≤ fα(t) ⇐⇒ Γ(1− α) ≥ 1

Γ(1 + α)
⇐⇒ Γ(1− α) Γ(1 + α) =

πα

sin(πα)
≥ 1 .

In Figs 8-12 LEFT we compare for α = 0.25, 0.5, 0.75, 0.90, 0.99 in logarithmic
scales the function eα(t) (continuous line) and its rational asymptotic representa-
tions, fα(t) valid for t → 0 (dashed line) and gα(t) valid for t → ∞ (dotted line).
We have chosen the time range 10−5 ≤ t ≤ 10+5. In the RIGHT we have shown
the plots of the relative errors (no longer in absolute values)

fα(t)− eα(t)

eα(t)
,

eα(t)− gα(t|
eα(t)

, (3.10)

pointing out a continuous line at an error 1% under which the approximation can
be considered reliable.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10−5 100 105

α = 0.25

 

 

eα(t) = Eα(−tα)

fα(t) =
[
1 + tα

Γ(1+α)

]
−1

gα(t) = [1 + tαΓ(1 − α)]−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10−5 100 105

α = 0.25

 

 

[fα(t)− eα(t)]/eα(t); fα(t) =
[
1 + tα

Γ(1+α)

]
−1

[eα(t)− gα(t)]/eα(t); gα(t) = [1 + tαΓ(1 − α)]−1

Fig.8 Approximations fα(t) (dashed line) and gα(t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.25.
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Fig.9 Approximations fα(t) (dashed line) and gα(t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.50.
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Fig.10 Approximations fα(t) (dashed line) and gα(t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.75.
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Fig.11 Approximations fα(t) (dashed line) and gα(t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.90.
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Fig.12 Approximations fα(t) (dashed line) and gα(t) (dotted line) to eα(t) (LEFT)
and the corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0.99.

As a matter of fact, from the plots in Figs 8-12, we recognize, for the time range
and for α ∈ (0, 1) considered by us, the relevant inequality

gα(t) ≤ eα(t) ≤ fα(t) , (3.11)

that is gα(t) and fα(t) provide lower and upper bounds to our Mittag-Leffler func-
tion eα(t) . This of course can be seen as a conjecture that we leave as an open
problem to be proved (or disproved) by specialists of CM functions.

We also see that whereas the short time approximation fα(t) turns out to be
good only for small times, the long time approximation gα(t) is good (surprisingly)
also for short times, falling down only in an intermediate time range. In fact from
the RIGHT of Figs 8-12 we can estimate the ranges of validity when the relative
error is less than 1%. We could further discuss on them.
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Concerning Padè Approximants (PA) for the Mitag-Leffler functions Eα(−x) for
x > 0 and 0 < α < 1 we like to cite Freed et al. [13]for an appendix devoted to
the table of PA, Starovotov and Starovotova [44] for theorems on the best uniform
rational approximations. Quite recently Zeng & Chen [49] have found a global Padè
approximation with degree 2 of the generalized Mittag-Leffler function Eα,β(x) with
x > 0, 0 < α < 1 and β ≥ α. In this interesting pre-print the uniform approximation
can account for both the Taylor series for small arguments and asymptotic series
for large arguments, but no upper and lower bounds are obtained as in our case.

We point out the fact that our first PA’s [0/1] are constructed from two different
series (in positive and negative powers of tα) both resulting CM functions whereas
the successive PA’s of higher order can exhibit oscillations for t > 0.

4. Conclusions. We have discussed some noteworthy properties of the Mittag-
Leffler function Eα(−tα) with 0 < α < 1 in the range t > 0.

Being a completely monotone (CM) function, because of the Bermstein theorem
this function admits non-negative frequency and time spectra. We have pointed out
that these two spectra are equal, so providing a universal scaling property.

Furthermore, in view of a numerical approximation we have compared two dif-
ferent sets of approximating CM functions, asymptotically equivalent to Eα(−tα)
for small and large times: the former commonly used in the literature, the latter
probably new. The last set is constituted by two simple rational functions that
provide upper and lower bounds, at least in our numerical examples on a large time
range. We are allowed to the conjecture that this bounding property is always valid
for any t > 0 and for any α ∈ (0, 1): an open problem offered to specialists of CM
functions. Last but not the least, we note that our rational function approximating
Eα(−tα) for large times provides (surprisingly) a good numerical approximation
also for short times, so failing only in an intermediate range.

Final remark. Since the appearance of the first version (May 2013), this paper was
submitted to the attention of some colleagues and to any interested reader of arXiv
in order to get the proof of our conjecture. Only recently (October 2013) a proof
was provided by Thomas Simon (University of Lille, France) based on probability
arguments, see [42]. We note, however, that in July 2013 Renato Spigler (University
of Rome 3, Italy) proved, in part, the conjecture made in eq. (3.11), for x := tα

in some right neighborhood of x = 0. This set is the most critical in establishing
such conjecture, see Fig.s 8 – 12. See R. Spigler, 2013 SIAM Annual Meeting, July
8-12, 2013, San Diego, CA (USA), MS 119, minisymposium on “Special Functions:
Applications and Numerical Aspects” – Part II of II, p. 100.
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[41] R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions. Theory and Applications,

2-nd ed., De Gruyter, Berlin, 2012.
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